
Wildcat
        Software

WinDLL Fastrack:    System Project

Introduction
Data Types
Programming Notes
Registering this Disk.

Functions
Function Declarations
GetDriveType
GetSystemDirectory
GetTempDrive
GetTempFileName
GetWindowsDirectory

For information on how to use help,
 choose Help \ Using Help.

System Project Introduction

The Windows System project covers functions suppling information about the operating
environment.    With these functions, one can determine where the Windows program is
installed,    how many drives are available and their type, which drive is the fastest, and
create unique temporary files for use by your software.

There are two modules the System project:
Drives and Temp Files    Drive and temporary file information.
Windows Directories    Obtain Windows the 'Program' and 'System' directories.

Drives and Temp File functions
WGetDriveType    Removable\ Fixed\ Network.
GetTempDrive    Fastest drive to use for temp files.
GetTempFileName    Create a unique temporary file name.

Windows Directory functions
Get WindowsDirectory    Drive and Path of the windows program.
GetSystemDirectory    Drive and Path of the windows 'SYSTEM' directory.

'Declarations for Windows System Functions
'No data structures required for these routines
'Note: Expand View prior to COPYing to avoid word wrapping.

'Windows Directories
Declare Function GetWindowsDirectory Lib "Kernel" (ByVal lpBuffer$, ByVal nSize%) As
Integer
Declare Function GetSystemDirectory Lib "Kernel" (ByVal lpBuffer$, ByVal nSize%) As Integer
'Windows Drives and Temp Files
Declare Function GetDriveType Lib "Kernel" (ByVal nDrive%) As Integer
Declare Function GetTempDrive Lib "Kernel" (ByVal cDriveLetter%) As Integer
Declare Function GetTempFileName Lib "Kernel" (ByVal cDriveLetter%, ByVal lpPrefixString$,
ByVal wUnique%, ByVal lpTempFileName$) As Integer

GetDriveType (nDrive%) as Integer

Returns    Key Value specifying that drive nDrive% is either removable, fixed, or a remote
network drive.

Return Key Values:
0 = Can not determine.
1 = Does not exist.
2 = Removable
3 = Fixed
4 = Remote (Network)

Example

GetSystemDirectory (lpBuffer$, nSize%)    as Integer

Reads the pathname of the Windows system subdirectory (libraries, drivers, font files) into
lpBuffer$.    Allocate nSize%    at least 144 Bytes for lpBuffer$.

Returns    Length of the string copied into lpBuffer$.    Returns    0 if not successful.

Example

GetTempDrive (cDriveLetter%)    as Integer

Returns either current    drive or optimum (fastest) drive for a temporary file location.    Enter
0 in cDriveLetter% to receive the current drive.    An Asc(drive letter) in cDriveLetter will
return the Asc(letter) of the most easily accessed disk available for a temporary dataset.   
Visual Basic does not support the char data type therefore we must operate with integers.

Returns      Integer value that contains (in part) the Letter representation for the optimal
drive.

Example See: Working with Bool, Byte and Char Data.

GetTempFileName (cDriveLetter%, lpPrefixString$, wUnique%, lpTempFileName$)    as
Integer

Creates a temporary filename in the format: drive:\path\prefixuuuu.tmp    and places the
filename in lpTempFileName$.    Requested Drive is specified as Asc(cDriveLetter%), Use
0 for the current drive.    Prefix is the letters in lpPrefixString$.    uuuu is the hexadecimal
value of the number in wUnique%.    If the cDriveLetter%    TF_FORCEDRIVE flag (&H80 =
128) is set, then windows will not change the requested drive letter to an optimal drive.

Returns The unique value (uuuu) in the temporary file name.

Example See: Working with Bool, Byte and Char Data.

GetWindowsDirectory (lpBuffer$, nSize%)    as Integer

Puts Pathname of the Windows directory (Windows Applications, INI, and Help files), in the
buffer lpBuffer$.    Pre-allocate lpBuffer$ to nSize% bytes before calling, recommended
value >= 144.

Example

cDriveLetter%    Letter designation for a disk drive.
Send as an Integer,    ie: cDriveLetter% = Asc("C") for Drive 'C:'

lpBuffer$    String$ for receiving Drive and Path string. Remember to allocate at least nSize
% bytes of space to avoid Unrecoverable Application Error(s).
ie: lpBuffer$ = Space$(nSize%)      Should be at least 144 bytes.

lpPrefixString$    String$ containing temporary filename prefix.    Limit to 4 characters.

lpTempFileName$    Receiving String$ for the temporary filename.    Remember to allocate
at least nSize% bytes of space to avoid Unrecoverable Application Error(s).
ie: lpBuffer$ = Space$(nSize%)      Should be at least 144 bytes.

nDrive%    Drive sequence value (Drive A = 0,    B = 1,    C = 2,    etc.)    for the type to be
determined.

nSize%    Notifies Windows of allocated String$ space for the return buffer.    String$ less
than nSize% bytes in length, can cause an Unrecoverable Application Error.

wUnique% Specifies a unique identification number for the temporary file, converted to a 4
Byte hexidecimal string in the temporary file name.

Sub GetWindowsDirectoryButton_Click ()

Source code is shipped with registered disks...

Sub GetSystemDirectoryButton_Click ()

Source code is shipped with registered disks...

Sub GetDriveTypeButton_Click ()

Source code is shipped with registered disks...

Sub GetTempDriveButton_Click ()

Source code is shipped with registered disks...

Sub GetTempFileNameButton_Click ()

Source code is shipped with registered disks...

Wildcat
                              Software
WinDLL Fastrack:    Programming Notes

Windows Dynamic Link Libraries.
Windows & Visual Basic Data Types
Naming conventions used in sample programs.
Unrecoverable Application Errors.
Working with Bit wise data.
BYTE,BOOL & Char data types.
Registering this Disk.

For information on how to use help:
choose Help - Using Help.

Registering this disk:

Why should YOU register,

You get the most current version of this disk.(We have made improvements!)
You get the source code for the WinDLL programs.
All following updates are only $10.00
You are notified of changes to your disk and about new programmers tools.

Suggested registration price: $19

Wildcat Software
PO Box 2607
Cheyenne, Wyoming 82003
Attn: Windll Fastrack

We welcome any suggestions that will help improve this program, please feel free to write or
contact us on CompuServe.      Our CompuServe Id is 76675,122.

The Window Dynamic Link Libraries

Visual Basic DLL declarations require that we state the Dynamic Link Library where the
function is located.      There apparently are 4 Windows function libraries: Kernel, User,
System and    the GDI.
If you wish to experiment with functions not covered in this release, try referencing one of
those libraries.   

Windows Data Types and Visual Basic Equivalents

The following table lists the Windows data type with respect to using Windows function calls. 
The VB Parameter list recommended types to use as a function parameter or return type.
Use the VB Structure type in structures that the Windows DLL will access.

Windows VB    Parameter VB Structure

BOOL Integer (AND) String * 1
BYTE Integer (AND) String * 1
char Integer (AND) String * 1
dWord Long Long
HANDLE Integer Integer
int Integer Integer
LONG Long Long
LPSTR String ($) String * N
short Integer Integer
void non-TYPE* - -
WORD Integer (+) Integer (+)

See also: Naming conventions; Microsoft Windows Programmers Reference.

Naming conventions: Microsoft Windows Programmers Reference.

The naming conventions used for parameter names in the Microsoft Windows Programmers
Reference were retained in the sample code regardless of data type conversions for Visual
Basic variables.

Mircrosoft's parameter names use an italic prefix to indicate the parameters data type.
Following is a list of Mircrosofts Prefixes, Data Types and resulting Visual Basics type.

Prefix Type Visual Basic Type Example
 b BOOL Integer bStat%
 c BYTE Integer cDriveLetter%
 c char Integer cChar%
 dw LONG Long dwFlag
 f bit flags Bitwise Character String*1 or Integer
 h HANDLE Integer chWnd%
 l LONG Long lParam
 lp LongPointer String ($) lpAppName$
 n Short Integer nSize%
 p Short Integer pMsg
 w Short Integer wUnique%

Naming Conventions:
See Also: Naming conventions used in Mircrosofts Windows Programmers Reference.

The sample programs are oriented to give you a quick understanding of the Windows
functions without forcing you to dissect elaborate program code.      Most of the functions are
designed to operate as separate entities,    although they are assembled in groups where
they can be used together.      Each function is displayed as a named command button and
associated parameter fields.

         
The sample above shows a typical function example.    To test this example you would supply
the field parameters lpAppName, lpKeyName and lpString.    Clicking the
WriteProfileString command button would execute the function with your supplied values. 
The source code for this function would be found in the subroutine
WriteProfileStringButton_Click().    The the controls containing the supplied parameters
are named using the capitol letters of the function name followed by an underscore "_" and
the parameter name.      (WPS_lpAppName,    WPS_lpKeyName,    WPS_lpString and   
WPS_Return)

The subroutine, prior to calling the function, converts all the parameters to the proper data
type, using only local variables, except where data structures are used.
 ie:

lpAppName$ = WPS_lpAppName.Text
lpKeyName$ = WPS_lpKeyName.Text
lpString$                  = WPS_lpString.Text

ret% = WriteProfileString(lpAppName$, lpKeyName$, lpString$)

WPS_Return.Text = Str$(ret%)

Of course, you find the sample code a little more complicated than the above example, but
we kept it as simple as possible while trying to avoid execution errors.

Unrecoverable Application Errors

Making a Dynamic Link Library call removes us from Visual Basics safety blanket and errors
can crash the Windows Operating Environment.    Save your program prior to testing it, or
risk the AGONY OF DELETE.

While writing this code we caused Unrecoverable Application Errors in two ways.

FIRST METHOD: Using an undefined parameter in a function call.
Visual Basic does not require us to define variables prior to their being used.    This can
be a problem if we begin to make calls outside the Visual Basic operating environment. 
If a Windows function returns a value to one of its parameters, we MUST create that
parameter prior to calling the function.      If the parameter is a string BE SURE IT IS AT
LEAST ONE CHARACTER IN LENGTH.    Windows does not like basic's null length strings. 
If the function requests the length of a parameter string, BE SURE THE STRING IS AT
LEAST AS LONG AS YOU SAY IT IS.     

SECOND METHOD: Not declaring a function return type.
This error caused a hour of confusion for us one day.    Every Windows function returns
a value which is 'typed' in the function declaration.

        i.e.      Declare Function GetFocus Lib "Kernel" () as Integer
Not having the 'as Integer' type following the statement would have caused a runtime
error,    if my program hadn't caused a Unrecoverable Application Error first.    This
CRASH can be knarly to find because the 'as type' part of the declaration is usually not
in view on the edit screen.

Working with Bitwise Data
A quick refresher course on    bitwise operations.

Bit operations: Many of the Windows DLL's return values should be read as a Bit Flags.   
Listed below are eight possible bit flags and values.

Bit Position Byte Value Basic Exponential
0 0000 0001     1     2^0
1 0000 0010     2     2^1
2 0000 0100     4     2^2
3 0000 1000     8     2^3
4 0001 0000     16     2^4
5 0010 0000     32     2^5
6 0100 0000     64     2^6
7 1000 0000     128     2^7

If more than one bit flag is set in the byte the value becomes the sum of the flag values.
 Example:    If    Bit #1, Bit #5 and Bit #6 were set then

Byte is    0110 0010       
Value is    2 + 32 + 64    = 98

The basic 'AND' operator allows us to test for Bit Flags.

Example:    Testing Byte 0110 0010 = 98

Byte Value    AND    Test Value        = Result      Bit Flag Set
98 AND 1 = 0 No
98 AND 2 = 2 Yes
98 AND 4 = 0 No

 98 AND 8 = 0 No
98 AND 16 = 0 No
98 AND 32 = 32 Yes

 98 AND 64 = 64 Yes
98 AND 128 = 0 No

The basic exponential allows a fast bit map testing
Example:
            Program..

ByteVal = 98
For bit = 0 to 7

If ByteVal AND 2^bit Then Print "Bit "; bit; " set."
Next

          Prints...
Bit 2 set.
Bit 5 set.
Bit 6 set.

Sending and Receiving the BYTE, BOOL & Char data types.

The C language BYTE, BOOL & Char data types are one byte variables not supported by
Visual Basic, but there is a work around.    Sending BYTE data is quite easy since the you can
pass any BYTE variable as an integer. (the smallest object that can be 'stacked' in the PC)

Receiving a BYTE result is a little more tricky.    Keep in mind that you are receiving an integer
with only one byte of valid information.      We worked our way around this by using the 'And'
operator with an integer equal to 255.

Example: From the GetTempDrive* function that returns a temporary drive letter as a BOOL.

Problem:    We expect a return    value range of 0 to 255 for a BOOL
    But instead we get a    the return value;      ret% = 14915

Solution:    tmpDrive% = ret% And 255            'AND' the return with 255
 ? tmpDrive%  'prints    "67"
 ? Chr$(tmpDrive%)  ' prints    "C"

This example only deals with a single byte.    Integer bit flags are occasionally used by the
windows routines.    You can expect to get a Long with them, also.

The GetTempDrive function is in    WinDLL's example code project    WIN_SYS.

AND the return value of this parameter with 255, see the section on BYTE, BOOL & Char
data types.

We prefer the BASIC    String$ type for parameters, remember to allocate sufficient space
for the return string.    If Windows writes to the variable, remember that the last character in
the string will be a null.

For Structures we must use the VB String * n Type.    If you use String * n types for
parameters remember that the last character in the string is a null.    Make n equal to the
length of the longest expected return string, + 1, for the null character.

A WORD is an unsigned integer.    If you operate on WORD variables, remember that
negative integer values are greater that 32767.    Passing a negative integer as a WORD is
viewed as an unsigned integer by Windows.

A Void is a return only parameter.    Declaring a function without the 'AS TYPE' is equivalent
to a void Windows function.

hWnd is a reserved name in Visual Basic so we substituted chWnd (control handle)

Visual Basic does not support bitflag operations see the section:Working with Bitwise
Data.

